The Structure of Homomorphisms from Banach
نویسنده
چکیده
We show that the structure of continuous and discontinuous homomorphisms from the Banach algebra Cn[0,1] of n times continuously differentiable functions on the unit interval [0,1] into finite dimensional Banach algebras is completely determined by higher point derivations.
منابع مشابه
Automatic continuity of surjective $n$-homomorphisms on Banach algebras
In this paper, we show that every surjective $n$-homomorphism ($n$-anti-homomorphism) from a Banach algebra $A$ into a semisimple Banach algebra $B$ is continuous.
متن کاملCharacterization of n–Jordan homomorphisms on Banach algebras
In this paper we prove that every n-Jordan homomorphis varphi:mathcal {A} longrightarrowmathcal {B} from unital Banach algebras mathcal {A} into varphi -commutative Banach algebra mathcal {B} satisfiying the condition varphi (x^2)=0 Longrightarrow varphi (x)=0, xin mathcal {A}, is an n-homomorphism. In this paper we prove that every n-Jordan homomorphism varphi:mathcal {A} longrightarrowmathcal...
متن کاملAlgebras defined by homomorphisms
Let $mathcal{R}$ be a commutative ring with identity, let $A$ and $B$ be two $mathcal{R}$-algebras and $varphi:Blongrightarrow A$ be an $mathcal{R}$-additive algebra homomorphism. We introduce a new algebra $Atimes_varphi B$, and give some basic properties of this algebra. Generalized $2$-cocycle derivations on $Atimes_varphi B$ are studied. Accordingly, $Atimes_varphi B$ is considered from th...
متن کاملA Certain Class of Character Module Homomorphisms on Normed Algebras
For two normed algebras $A$ and $B$ with the character space $bigtriangleup(B)neq emptyset$ and a left $B-$module $X,$ a certain class of bounded linear maps from $A$ into $X$ is introduced. We set $CMH_B(A, X)$ as the set of all non-zero $B-$character module homomorphisms from $A$ into $X$. In the case where $bigtriangleup(B)=lbrace varphirbrace$ then $CMH_B(A, X)bigcup lbrace 0rbrace$ is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004